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ABSTRACT

We extend the results of our previous work (Part I) concerning steady

ideal flow with vorticity in a bounded domain to the situation where the

domain is unbounded and the flow is uniform at infinity. Prototypical

examples include vortex pairs and 96ppl vortex wakes behind a cylinder (in

uniform translation). The existence of solutions and the asymptotic behavior

of these solutions in a certain singular limit are established as in Part I

using a direct variational method. The variational principle needed here is

rather nonstandard, and so a detailed discussion of its formulation is

given. Special difficulties arise for flows in an unbounded domain due to a

lack of compactness (in the appropriate function space); consequently, we find

that there is nonexistence of solutions in sot ; cases.
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SIGNIFICANCE AND EXPLANATION

The purpose of this sequel (to Part I) is to apply the results detailed

in the previous work for a simple model case to a class of more complicated

problems arising in the dynamics of a two-dimensional, ideal fluid. The

theory of steady flow with vorticity developed in Part I is now extended to

include certain flow geometries commonly occurring in practice - that is,

steady ideal flows representing vortex pairs or (symmetric) vortical wakes

* behind a symmetric obstacle in a uniform stream. As before, special emphasis

- is given to flows with concentrated vorticity. A detailed discussion of the

phyiical principles underlying the formulation of the rather novel variational

*' approach to these problems is presented. Much of the analysis concerning the

_ qualitative description of solutions parallels that of Part I, although some

important differences must be dealt with here.
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ON STEADY VORTEX FLOW IN TWO DIMENSIONS, II

Bruce Turkington

Department of Mathematics
Northwestern University

and
Mathematics Research Center

University of Wisconsin-Madison

In this sequel to Part I we continue the study of

steady ideal fluid flows in two dimensions which

possess vorticity. Specifically, we consider steady

vortex flows imposed upon an underlying (non-trivial)

irrotational flow. Classical examples of such flows

include, for instance, the uniformly translating vortex

pair and the F~ppl vortex wake behind a cylinder in a

uniform stream; it is the appropriate generalizations

of flows such as these that we examine in the present

paper. As in Part I we characterize solutions of the

Euler fluid dynamical equations variationally as

extremals for an appropriate energy functional of the

vorticity. This approach permits us to develop here

the natural extensions of both the existence and the

Sponsored in part by the National Science Foundation,
grant no. MCS-8002927, and the United States Army under
Contract No. DAAG29-80-C-0041.



[ asymptotic results given in Part I. In the present

context, however, the variational problem itself is

less familiar and therefore its formulation is

discussed in detail. Particular emphasis is placed on

unbounded fluid domains since special difficulties (not

all of which are resolved here) arise in this case; for

example, complementary existence and nonexistence

theorems are proved for the vortex pair problem.

J1. VARIATIONAL PROBLEM

Let D C R2 be the closure of a bounded, simply-
connected subdomain of R2 = e 0)

+ {x=(xl,x2) eR :x2 >0

for which 0 e OD. We shall assume by suitably scaling

the x variables that D c {lxl 4 11. We shall study

the flow of an ideal fluid with unit density in the

(fluid) domain defined by

(1.1) D = (x e R2 : Ix11 < a,, x2 < a2 )\

for some (fixed) truncation parameters 1 < al,a 2 < .

We shall assume that 3D n R+ is smooth, so that 3D

is piecewise smooth and has no re-entrant corners. We

refer to D as the obstacle. The flow geometry we

have in mind is depicted in the figure.

The role of the truncation parameters

a = (a1 ,a2 ) is principally a technical one. It is of

considerable interest (and in some ways more natural)

to study flows in the unbounded domain D = R2 \D

-2-
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however, certain aspects of the subsequent analysis are

complicated in this case. Therefore, we choose to

restrict our attention to truncated domains of the form

(1.1) while developing the general results (§2-4). We

then give more specialized results for flows in

unbounded domains of the above type; in §5 flows past

an obstacle D * are treated, while in §6 the vortex

pair problem for which D - R2 is studied. We remark

that since 3D n {x2 = 0) shall always be a stream-

line, all of these flows may be thought of as extended

(by reflection) to the symmetric domain D formed by

the union of D with its reflection about the x, axis.

The discussion in much of the sequel parallels

that already given in Part I (namely [4]), and the

notation is kept consistent with that of Part I. We

shall proceed to formulate the variational problem to

be studied in the present Part II, being brief at those

points where the relevant details have been developed

in Part I.

-3-



The (fluid) velocity field is given by

.(1.2) u =(ul(x),u 2 (x)) = JV*(x), x e D

for some streamfunction * recall J(ala 2 ) = (a2 ,-aI ).

The vorticity is then

(1.3) W = W(x) = -A*(x), x e D

We seek flows satisfying the following boundary

conditions:

on 3D

= -Ox2 - P on SD\SD

for constants - < p and 0 Q <. This means

in physical terms that we impose a flux across the

boundary segments aD n {x1 = * a1) with its rate

prescribed by 0 (the stream speed) while we require

that the flow be tangential on the remainder of SD

(as * is constant there). The value of 1 - defined

only up to an additive constant - is normalized by the

parameter P. Clearly, these boundary conditions are

chosen so that a flow in the truncated domain D

approximates an unbounded flow past the obstacle

with velocity (-Q,O) at infinity.

The Green function for -A in D is denoted by
(151 x

(1.5) g(x,x2) - loglx - x'lI - h(x,x'), x, 6 D

and the Green operator by

(1.6) Gw(x) = f g(x,x')w(x')dx'
D

Also, we write

-4-



(1.7) H(x) - 1 h(x,x), x e D

Let Ti n (x), x e D, denote the (unique) solution of

An - 0 in D

1.8n 0 on D

n T X 2 on 3D\35D ;

then n is the streamfunction for a normalized irrota-

tional flow in D. Now the streamfunction I can be

expressed in terms of the triple w,Q,u, since accord-

ing to (1.3) and (1.4) there must hold

(1.9) -w -

As explained in Part I, the steady Euler fluid

dynamical equations can be expressed in weak form as
(1.10) f w3 (I,)dx - 0 for all # e C;(D) ;

D

recall a(*,#) - V*-JV#. If Q is prescribed then

this is a condition for w alone. In fact, this is

the condition that w be a constrained extremal for a

certain (energy) functional EQ. Let the vortex energy

be defined by the functional

(1.11) E(w) - f w(x)Gw(x)dx
D

-. f f g(x,x')w(x)w(x')dxdx'
DD

and let the vortex impulse be defined by the functional

(1.12) P(w) = f n(x)w(x)dx
D

-5-



For any given 0 < 0 ( * we consider the functional

(1.13) = E(w) - QP(w)

Then, as shown in Part I, the dynamical condition

(1.10) is equivalent to

dE E(W(t)I... 0

the variations w(t) of w are defined by
wlt)(Cx) = W(E 1 (x)), Itl < r, where x = tl(Y) is

the measure preserving diffeomorphism of D defined by

solving the equations

dx = JV#(x), x(O) = y

Thus we base our variational approach to the problem on

the fact that any extremal w of EQ over a class of

admissible functions containing all the variations
(t ) yields a solution of (1.10) - that is, a

dynamically possible flow.

The physical interpretations of E and P are

discussed in detail in the appendix. Only in the

special case of vortex pairs in which D = R and

r(x) = x2 do these formulas seem to appear in the

literature; for example, see Batchelor [1]. Of course,

the corresponding concepts of energy and impulse are

well developed in the standard literature for

irrotational flows.

-
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We let the class of admissible functions, KA(D),

be those 0 4 w e LO(D) satisfying the constraints

(1.14) f w(x)dx - 1

D

(1.15) ess sup w(x) ( .
xeD

The circulation in (1.14) is normalized to be 1 by

scaling w, and the vortex strength parameter, X, is

required to satisfy A meas. D > 1. In §2 we give the

basic existence result which states that there exists a

maximizer w = w for EQ over the class KA(D).

Furthermore, the maximizer w has the special form:

(1.16) w - XIa, 0 - {x e D : (x) > 0)

where * is defined by (1.9) and v is a constant

(uniquely determined by w). There is no corresponding

uniqueness result; indeed, nonuniqueness is present in

some geometries.

In 13-4 we turn our attention to the limiting

behavior of solutions as A + *. We show that

(1.17) c0 ,A(x) + (x - X*) as A +

in the sense of distributions; 6(z) is the unit

(Dirac) delta measure at z = 0. The limit point XQ

is characterized by the property

(1.18) HQ(Xo) = min HQ(x), HQ(x) - H(x) + Qn(x)
xeD

The precise nature of the limiting form of solutions is



expressed in terms of their scaled versions:

(1.19) CO Q(Y) A A (X + cy)
,0, I AQ" (A.I C R2  is open

and bounded)

where X0, = D x wO,(x)dx and rc2 = 1. We prove

that as A * -

(1.20) Q + Bo weakly star (R )

I 3AQ,+ B1 (0) C1  sense as curves

The methods used in §2-4 are exactly those already

developed in the corresponding sections of Part I;

consequently, these sections of the present Part II are

brief.

New difficulties fundamentally different from

those in Part I arise in §5-6 when unbounded domains

are considered. Since then the functional EQ is no

longer weakly (star L") continuous on KA(D) we are

forced to find solutions on truncated domains and to

supply a priori estimates for their support. Only

under the restriction that A be large enough are we

able to carry out such a procedure for the general case
2

of a domain D = R+\D; the previously established

asymptotic properties of solutions are used crucially

in the a priori estimates needed for the existence

proof. This analysis constitutes §5. These steady

vortex flows are the appropriate generalizations of the

classical example due to F6ppl of a point vortex pair
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stationary with respect to a moving cylinder (in the

present notation D - (lxi ( 1, x2 o 0} and A =

the F5ppl vortices are referred to by Larab [3] p. 223.

The families of such flows (as constructed in §5) are

of some real interest as they provide simple models for

a familiar physical experience: the steady (symmetric)

vortical wake behind a symmetric obstacle in a uniform

stream.

The more tractable problem of (uniformly

translating) vortex pairs in the special domain

DO - R2 is taken up in §6. In this case the vorticity

possesses an additional symmetry: w(-x 1 x2 ) - w(xlx 2 )

and w(x1 x2 ) is monotonic in x, for x, > 0.

Various manifestations of this permit a more complete

analysis of solutions than is possible in §5. A

complete existence theory can be given but it requires

* that the class K (DO) be slightly widened. In

particular, the nonexistence of solutions (of the form

(1.16) for a prescribed Q > 0) in KA(D0) is

demonstrated for small enough X; in terms of the flow

this means that the vortex core cannot be too broadly

spread. Finally, an alternate variational approach is

sketched which closely resembles the approach used for

vortex rings (the axisymmetric analogue) by Friedman

and Turkington [2].

-9-



§2. EXISTENCE

Let D be as in (1.1) with al,a 2  fixed. Let

K (D), the class of admissible functions in D, be

defined by

(2.1) KA(D) = {w e L'(D) : f w(x)dx = 1,
D

0 4 w(x) 4 X, a.e. x e D}

Let the (energy) functional E0  be defined on KA(D) by

(2.2) E (w) f f g(x,x')w(x)w(x')dxdx'
D D

- Q f n(x)w(x)dx
D

for any given 0 <Q ; recall the notations

established in (1.5-1.8). We assume throughout the

sequel that

(2.3) A> (meas. D)- •

The following existence theorem provides an

absolute maximizer for EQ in the class KX(D).

Theorem 2.1. There exists w = wQ, e KA(D) such that

(2.4) E() = max E (w)
eKX(D) Q

Proof. The proof is almost identical to the proof of

Theorem 2.1 in Part I, except that E there is

replaced by E0 here. We leave the easy modifications

to the reader.

4

-10-
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The computations sketched in §1 (their more

detailed counterparts are given in Part I) yield the

following variational conditions.

Corollary 2.2. Whenever w e KA(D) satisfies (2.4)

then there holds

(2.5) f wa(Gw - Qn,)dx - 0 for all e 6 C;(D)

The above functional dependence expressed in weak

form can be given explicitly.

Corollary 2.3. Whenever w 6 K,(D) satisfies (2.4)

then there exists a (uniquely determined) constant v

such that

(2.6) AI a.e. in D,

- {x e D : Gw(x) - On(x) > p)

I denotes the characteristic function of 0.

L Proof. Again, the proof is almost identical to the

proof of Corollary 2.3 in Part I. Using the former

methods we now find that

- ess sup[Gw(x) - QI(x) - ess inf[Gw(x) - Qn(x)]•W(x)<X w(x)>O

As before we then show that w - 0 a.e. in

{Gw - Qn = a}. We note that in contrast to the case

in Part I P is not necessarily positive.

~-11-
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§3. ASYMPTOTIC ESTIMATE

We let w = Q'A be any maximizer as in Theorem

2.1, and let 4 be given by (1.9).

Lemma 3.1. There holds
(3_) 1 €2

(3.1) E (W) > log .- C1  (Ae = 1)

where C1  is a (positive) constant depending on Q.

Proof. We let w e KA(D) be

(3.2) w = AIB(x)

* where X. is chosen such that

HN(X 0 ) = min HQ(x), HQ(x) = H(x) + Qn(x)
~x6D

Then a straightforward calculation yields
EQ(w) ) E (W) ) L log L - ) + o()

Q 4w 2e Q

as A + w, and so (3.1) follows.

The basic asymptotic estimate for large A is

proved by adapting the methods of Part I.

Theorem 3.2. There is a constant R > 1 depending

on Q (independent of X) such that

(3.3) diam(supp w) 4 R 2 = )

Proof. We define as in Part I

(3.4) T(w) = wdx
-1D

-12-



then we have clearly an identity and an estimate:

(3.5) E(w) = T(w) + QP(w) + ,

(3.6) 2EQ(W) - 2T(w)

We claim that T(w) 4 C2  for a constant C2

depending on Q (independent of X). First we notice

that u )o -Q/2(a I - 1)X; this follows since if j ' 0

then fx : l1x 1 Xl'a I, Qx2 Iul) C {x e D : Qn(x) l Jull

C supp w, and hence 2(al - iI I 1/A. Therefore,

taking X sufficiently large we may assume that
o , 1

Now we estimate

* 2T(w) f 1 - 1)+wdx + 1
D

1but since 4 ( -ui j on 3D we may apply the

reasoning of Lemma 3.2 in Part I to conclude

f Iv(# - 1)+12dx - f (* - 1)+wa 4x C

D D
and so the claimed bound for T(w) is proved.

Returning now to (3.6) we have for arbitrary

x e supp w

Gw (x) > Gw(x) - On(x) > i ) log - C3

by virtue of Lemma 3.1. Hence we conclude

-2wC 3 f log e diam D w(x')dx'
D

From this point on the proof is completed exactly as in

the proof of Theorem 3.3 in Part I.

-13-
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Remark. As is evident from the above proof the

constant R depends on the diameter of D, and so the

resulting estimate cannot be applied directly to

solutions defined in unbounded domains.

J4. LIMITING BEHAVIOR

The precise limiting form of w = WQA as X +

is discussed in this section. By extracting a sequence

X = A. + if necessary we suppose that

(4.1) X = XWQ,(x)dx + e D as X = A. -

Theorem 4.1. Any XQ as in (4.1) satisfies

(4.2) H%(XQ) =min %(x), HQ(X) =H(x) + Qn(x)
,ceD

Proof. We follow the method of proof of Theorem 4.3 in

Part I. Let w e KX(D) be defined by (3.2). Then

(recalling Lemma 4.2 in Part 1) we have

EE(() ) f f loglx-xol- W(x);(x')dxdx'
Q ~ D D

- f f h(x,x°)w(x)w(x ')dxdx ° - Q f n(x)w(x)dx.
DD 

D

Taking X and using Theorem 3.2 we find, as

required,

H N ) H a =(Q min Ho(x)
xeD

-14-
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We are now able to assert that as A - A

(4.3) wQ,(x) 6(x - X*) in the sense of distributions

where 6(x - X ) is the unit (Dirac) delta measure at

x - X. given by (4.2). Moreover, the statements of

Theorem 4.4 and Theorem 4.5 in Part I hold without any

change for the scaled versions of w and

respectively; we will not restate them here. We note

that the limiting functions 4 and v are, of

course, independent of Q.

J5. UNBOUNDED DOMAINS

In this section we extend the theory previously

developed in domains of the form (1.1) to unbounded

domains

D 2
(5.1) D R \+ (

where D is as before; that is, we study flows in the

(full) exterior of a symmetric obstacle. We now write

= R+, D1 = R+\{Ixl 4 1), and we assume (as before)

that D 1 cD c D0 . Also, we denote by g(x,x'),

g0 (x,x'), gl(x,x') the Green functions corresponding

to D, Do, D1  respectively. The streamfunction n

now represents irrotational flow past D with velocity

(1,0) at infinity, and is defined by

-15-



An = 0 in D

= 0 on 3D
• " 15.2)

(5.2)-- x2 + o(Ixl-l), Vn = (0,1) + 0(Ixj- 2 )

as IxI +

The following lemma provides an a priori bound for

the limiting location of a solution as I + m.

Lemma 5.1. Let x e D be an arbitrary critical point

of H0 = H + Qr, 0 < Q < m. Then

(5.3) Ix*.l 4 AQ - 1

. (5.4) x * AQ -

for a constant A depending only on D.

Proof. The proof of these estimates requires some

technical asymptotic properties of the functions H

and n, so we present the demonstrations of these

properties first.

Property of H: Let H be defined by

1 1 *(5.5) H(x) = log T- + H(x), x e D
2

We claim that

(5.6) IVH(x)l , Cx2 lx1- 4  (Ixi > 2)

To prove this we observe that VH(y) = V xh(y,y), y e D,

if we define
1

h(x,x') = h(x,x') - logix - x1

-16-
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where we write x- (xj,-xj). For any fixed x' e D,

h(x,x') is harmonic in x e D and h(x,x') - 0 when

x2 - 0. Thus, h(x,x') can be extended by reflection

to be a harmonic function in x e D* R I D )

where D is the reflection of D about the x1 -axis;

h(x,x') is then an odd function of x2. It follows

that the gradient is estimated by

(5.7) IVxhlyyl ( Cy1- sup Ihlx,y)I (lyl , 2).

I x-yI <fyl

In order to bound the right hand side of this

inequality we introduce h1 (x,x') defined to be the

corresponding function for the domain

D1 - R\{IxI 1} it is computed explicitly to be

S 1 (x,x') 0 log(l + 4x2x Ix'- 2fx - x* -2 )

where we write x' Now since

g l (xx') (g(x,x') g0 (x,x') for x,x' e Dl, we find

that 0 (h(x,x') h 1 (x,x') for x,x' e DI .

Therefore, the desired estimate (5.6) follows from

(5.7) as we verify that

sup h1(xy) Cy2 1y 3

Ix-yI <IyI
l2

Properties of n: Let n be defined by

(5.8) n(x) - x2 + n(x), x e D

We intend to determine expansions for n and Vn for

large x; we proceed as usual from the Green

representation formula

I



r,

(5.9) n(x) -Lf [g0 (x,x,) Tr(x. )-i(x,) yr(x,x')]do',
3D

valid according to (5.2). Expanding g0 (xx'), lxI , 1,

in a Taylor series (up to second order) in x' about

x' = 0 we obtain

(5.10) n(x) = 2C2 x2 1x1 2 + 4Cl 2 xlx 2 ix1 4 + o(tx1 3)

with

!A
12=.~ f, [ an j ( x.) ; (x,) 2..]s

DD

and C12  given similarly (xjxj replacing xj in the

integral); the other corresponding coefficients

CICIC22 are all zero. Analogously, first

differentiating (5.9) and then expanding, we get

(5.11) Vii(x) = V(2C 2 x2 1x1-2 + 4Cl 2Xlx 2 1xVl4 +Ollx1 4 )

We claim that C2 < 0 (provided D * $)o Indeed,
A

using the fact that , = -x2  on 3D, we findn. -x 2

(5.12) -2wC 2 = 3D I-x2 d a
A D

ax2
= [ x 2- x ]d

aD

A2 ~. 2 d2 f Ivi dx + fIVx212dx
D

- M + meas. D

'" -18-



where M f IV(n - x2)12 is the (so-called) induced

mass of D.

The particular consequence of these derivations

needed in the subsequent proof is the expansions

(5.13) L (x) - -4C 2 xl txj4+0(Ix- 4 ) as jXl -(53 2 Xl1

Proof of (5.4). By the above we have as x 2

VH(x) - (o, -j.- + VH(X), jV(x)j - o(I.,-3)
2

Vnlx) - (O.l) + Vn(x). IVii(x)I - o(Ix1-2)

Together these give

(5.14) VH(x)°Vn(x) + O(4xl-) as

4w 12 x

But at a critical point x - x there holds
VH(x*).Vn(x*) = QIVn(x*)12 0 + o(Ixl" 4)

clearly, this contradicts (5.14) if x*Q ; A for a

sufficiently large constant A.

Proof of (5.3). For this part we calculate

VH(x)JVf(x) 1 n W) + Vi(x).JVn(x)4wx 2 X I

As lxil + for x2 4 AQO-  we get, using (5.13),

(5.6) and (5.2),

(5.15) VH(x).JVn(x) = 1C -4 + O(Q-11X]- 4 )w 2xlx1

But at a critical point x - x there holds
* * * X*

VH(x ).JVn(x ) = -QVn(x )JV(x = 0

-19-



this contradicts (5.15) if Ix*IQ > A for a

sufficiently large constant A, since C2 # 0.

In the next theorem we find that maximizers over a

truncated class yield solutions in the (entire) domain

D provided that X is large. Let

Da = D n {xlI < a,, x2 < a2 } and let the class

Ka(D) consist of all those w e KA(D) such that

= 0 a.e. in D\Da.

Theorem 5.2. Let a = (al,a 2 ) be fixed so that

ala 2 > 2 max{l,AQ- I with A as in Lemma 5.1. Then

any (absolute) maximizer w = a  for EQ over

Ka(D) satisfies

(5.16) supp W C Ox 11 4 a, - 1, 0 4 x2 4 a2 - 1}

provided X • A

where & is a sufficiently large constant depending on

a,Q,D.

Proof. The existence of a maximizer w follows by the

proof of Theorem 2.1. The basic asymptotic estimate

(3.3) with a constant R depending on a,Q,D holds

for any such maximizer w; the different method of

truncation used here in §5 does not affect the validity

of the proof given in §3. Taking A large enough so

that X - A implies Re 4 C and IX - C ,
S2X 2
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(recalling (4.1) which is valid in the present case

also) we find that

supp, w C B1 (X-6)

for some minimum point X* of HQ. Now, the required

containment (5.16) follows immediately from Lemma 5.1.

The purpose of (5.16) is, of course, to ensure

that the free boundary belonging to a maximizer v

does not touch the truncating boundary where x, - *aI

or x2 - a2. It is possible then to proceed as in 13

to the conclusion that for w given by Theorem 5.2

there holds

0 -f w(Gw - QO,#)dx for all # e C;(D)
D

and (for a uniquely determined constant p)
S= XI a.e. in D, 0 = {x e D : Gw(x) - Qn(x) > i}.

aa
In short, w = &IQA (with A ) A) yields a solution

(i.e. a dynamically possible steady flow) in the entire

domain D even though the class of admissible func-

tions is restricted to those supported in the truncated

domain Da .

We do not have an existence theory in D without

the restriction that X be large because the necessary

a priori estimates on the support of truncated

solutions are available (to us) only for large X.

All of the statements given in §4 concerning the

I.. asymptotic behavior of solutions as X + * carry over
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to the solutions found in Theorem 5.2. In particular,

the location X of the limiting point vortex is

determined by (4.2) and hence satisfies the conclusions

of Lemma 5.1. That is, it represents an equilibrium

point for the Hamiltonian system

dX . -JVH(X)

where X(t) describes the motion of a (unit) point

vortex moving in the fluid domain D in the presence

of an irrotational flow with streamfunction -Qn. In

the special case when D = D, (i.e. flow past a

cylinder) the equilibrium point x - Y.6 has been

computed explicitly by F~ppl using the method of

images; it is found to satisfy the equations

21x1x 2 - 1x12 - 1, 1 - 2Qx 2 (l - jx - 4)

"6. VORTEX PAIRS

The most well-known example of steady vortex flow

in R2  is that due to a uniformly translating vortex

pair. Taking account of the odd symmetry

o (wlXl,-X 2 1 = W(x1 ,X2 )) of w on R2 this problem

corresponds to the special case when

D - Do  {x e R2 : x2 > 0) in the present context.

Furthermore, solutions also always possess the natural

symmetry condition

(6.1) w(-x1 ,X2 ) - wlX 1 ,X 2 ) ;

* throughout this section we append this additional
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requirement to the definition of the class of

admissible functions K.(D0). The (energy) functional

EQ is defined on K.(D 0) by

(6.2) Eo W 1 f f go(x,x')w(x)w(x')dxdx'

- Q f x2w(x)dxD 0

where the Green function is

x1 (X - x0) 2 + (x2 + xp
2

(6.3) g0(xx') = log - 2 x 2 )
(x 1 - x 1 ) + (x 2 - j

We shall exploit the especially simple form of the

problem on Do  in order to give sharper results than

can be given for the general problems of J5.

For any w e K(D 0 ) we define its symmetrization in

the x, variable, e e KX(D 0 ), in the usual way; namely,

(= W (-Xl,X 2 ) = * *llx1;x2 ) (x1  0)

where 0,(t;x 2) (a monotonic function of t) is

4 (t;x 2) = meas.(xj e [0,) : c(x x2) C t}

We observe the important fact that E (w) ) W.

this follows since g0 (x,x') is a decreasing function

of (x1 - xj) for fixed x2 1xj and hence

f I gO(x,x')w (x)w (x')dxldx

f f gO(x,x')w(x)w(x')dxldx ,
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a consequence of standard theory. Therefore, any

maximizer w for E0  over Kx(D 0) can be assumed to
.- *

be symmetrized, w = w

We begin our analysis of vortex pairs by stating

an existence theorem analogous to that given in §5,

providing solutions in D for large X.

Theorem 6.1. Let a = (al,a 2 ) be fixed so that

al,a 2 ) 2 max(1,l/4wQl. Then any (absolute) maximizer

a for E over Ka(D) satisfies

(6.4) supp W C {IX 1 4 a, - 1, 0 4 x2  2 - i}

provided X ; A

where A is a sufficiently large constant depending on

a,Q.

Proof. We need only modify the proof of Theorem 5.2.

By virtue of condition (6.1) and the fact that

Ho(x) = log ,
4w 22

the only critical point x = XQ of H0 (x) + Qx2 is

XQ = (0,1/4wo). As before we find that

supp w C BI(Xo) if A ) A for a sufficiently large

constant A, and this yields (6.4).

The above theorem ensures that the maximizers

S= a with X A A represent solutions of the
QA

vortex pair problem in Do . These solutions, being
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symmetrized, then have the form

(6.5) w - XIn, A - (x e Do : G0w(x) - Qx 2 >i}

with 0 - {IXlI < z(x2 )} for a function z defined

implicitly by *(z(x 2 ),x2) - 0. It is straightforward

(using w - ) to verify that x (x) < 0 for
x2

x, > 0, and thus z e C1  on those open intervals

where z > 0.

The requirement in Theorem 6.1 that X be large

is more restrictive than the variational theory should

require and is imposed mainly for technical reasons. On

the other hand, the following theorem shows that

solutions in KX(D 0) for arbitrarily small A are not

possible.

.

Theorem 6.2. There does not exist w = w e K(D 0)

such that (6.5) holds (for some constant u) if X is

sufficiently small depending on Q, 0 < Q < *.

In the proof of this nonexistence result we

require three lemmas concerning a priori estimation of

the support of solutions having the form (6.5); these

lemmas are presented first. We remark that in (6.5) it

is necessary that u ; 0; otherwise, the containment

(0 < x2 < IMI/Q} C n contradicts the constraint

meas. 9 1/X <.
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Lemma 6.3. For all x e supp w there holds

I' (6.6) 2 1XX 2  E(w) w(x)G w(x)dx
D0•

Proof. Let x e supp w; we observe that

(x,x 2 ) e supp w whenever xixl 4 1x1 1 by virtue of

the symmetrization w - w . Since v o 0 we then have

x2
Ox2 4 GOw(xiX 2 ) I IVGow(xj}xj)dx

0

Upon integration in xj this yields

" 20x1 lx2 C f IVG0 w(x')Idx'
Ix Ixi

, Ocx'(x 2

222

C(21XIx ~2) (f IVG OWx)I dx,)
Do

= 2{1x Ix2E(w)}

as required.

In the results to follow we make use of the

elementary estimates
(6.7) g(xx) g + 2x2

2w l 1 + x-'

{ Co log x-x'l if Ix-x'l x2/2
~X

2

Co x-xl if lx-x'l x2/2

for a certain absolute constant C0 .
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Lemma 6.4. For all x e supp w there holds

(6.8) COCQ1 1a~~o'l (.8)x 2  O 1 max (1, log A /2 x 2 ) •

Proof. Let wP = 1 define P. > 0. If OX x2/2,

then

G0 w(x) 4 CO  f log 2x-x' Xdx' C log(x2 /PX).
tx-x' 2

, If P x2 /2, then

x 2
G o(x) c C0  f log Xdx'

Ix-x '<x2/2 I'T

+ Cox 2  f Ix-x'l-lXdx'
x 2 /2<Ix-x'I<p,

In either case we conclude

Qx2 C G0w(x) C C max{l,log(x2/PX)},

and so (6.8) is proved.

Lemma 6.5. For all x e supp w there holds

(6.9) xll 4 CQ-1 [l + E(w) max{ 1,log 2 •x1 1

Xl/2 E(w)

Proof. Recalling (6.6) we define

Y2 = 2E(w)/Q2 1XI11 > 2x2 ; then whenever x' e supp w

with xi > Y2 there must hold lxil C 1x1 /2. In
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light of this we have

(6.10) Qx2 < G0 W(X) 4 f g0 (xx')w(x')dx'
0<x (Y2

+ Ix fIx 1/2 g0 (x,x')w(x')dx'

We proceed to estimate these integrals separately.

First term:

- g0 (xx')w(x
')dx'

• O<x2¢Y

.x 2

(C O  I log Tx- 2

Ix-x'l<x2 /2

+CX 2 I Ix-x'i-lw(x')dx'C- 2 Ix-fX'I ;x 2 /2

( CAx2 + CAx 2Y2max{l,log(l/2 y2 )}

i ( C~~x2Y2ma )l~~/2Y2)}

here (in the second member) we observe that for

Ix - x'1 > x2 /2 there holds Ix - x'1 -1 4 51I -xI - I ,

and thus, using w e KA(D0), we need only estimate

f I-x'Il-Adx'
lx -xl- (2max{y2 ,1/Ay2 }

' 'xiy 2

4 CY2maxl,log(1/Y2Y2 )}
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Second term:

Ix FOg/ 0 (x,x')w(x')dx'

(C0 x2 IfIx11/ Ix-xlI 'w(x )dx'

Returning with these estimates to (6.10) we obtain

Qx2 < Cx2[Ay2 max (1,log (1/AX/2y 2 )) + 1xil1 3 j

the desired result (6.9) now follows by the definition

Of Y2'

Proof of Theorem 6.2. We assume that 0 < A (1

Lemma 6.4 implies that there is a bound b2 -b 2(0)

such that x2 4b 2  for x P-supp w. With b2 ) 1

fixed we may estimate the energy

0 < EW 4 sup G 0 w 4 C(Q)X log 2/1

to see this we apply the reasoning used in the proof of

Lemma 6.5 (with b2 replacing Y2) to get

Gow(x) f Oo~~x wx'db

22

(C~b 2log (2/X/2 b)

Lemma 6.5 now implies that there is a bound b1  b1 (Q)

such that 1x11 4 b for x e supp w. Obviously,

these bounds (independent of A) for the support of

w together give
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f w(x)dx C 2b b 2 < 1
Do0

provided A is sufficiently small (depending on Q),

and this is a contradiction since w e KA(Do).

In view of the above nonexistence result it is

desirable to widen the class of admissible functions in

order to be able to give a variational theory without

the restriction that A be large. We therefore

consider the new class

K'(D 0) - (w f f wdx 4 1, 0 C w 4 A a.e. in DO)DO

where we also continue to impose (6.1). The existence

of an absolute maximizer w - w for EQ over

K (D0) can be proved for arbitrary 0 < A < - using

the methods of this paper. The support of any such w

can be bounded (depending on 0) using the proofs of

Theorem 6.1 and Theorem 6.2 respectively for the cases

of large A and small A. Also, as we expect,

S-I A large
f wdx
DO  1 01 A small,

although a sharp estimate for the value of A

separating these two cases is not clear. We omit the

details here.

We close our discussion of vortex pairs with a

description of an alternate variational approach to the

problem. Rather than prescribing the speed Q (in the
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functional EQ) we prescribe instead the vortex

impulse P(w); then 0 must be determined along with

the extremal w as the Lagrange mul~iplier correspond-

ing to the vortex impulse constraint. The variational

problem is then to maximize the energy functional

=~w 1 f W(X)G w(x)dx

subject to the constraint

I x2 (x)dx - P (0 O P )
Do

over the class of admissible functions w 6 Ki(D0 ).

The existence of a maximizer w - w - wp X can

be proven for arbitrary 0 < A < -, 0 < P < , and any

such solution can be shown to have the form (6.5) for

some a > 0, Y > 0. This alternate approach has some

particular advantages when used in the analogous

(axisymmetric) problem of vortex rings, and has been

worked out in detail in Friedman and Turkington [2];

the variational formulation itself is an adaptation of

that proposed by Benjamin.

The speed Q is determined by w as follows:

(6.11) a f w(x)dx Y 2  w(x)w(x')dxdx'
D D 0 D 0 Ix-irl

(x' = (xi,-xV))

To show this we observe that since wA =I
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integration by parts yields

Omf I* dx -f W(G W) dx Qf wdx;

D x2 D 0x2D

thus, noting an obvious cancellation,

f wdx -f f j.- 0 (x,x')w(x)w(x')dxdx'

f I j-h(x~x')w(x)w(x')dxdx'

D 0 D 0  2

which is (6.11).

The asymptotic analysis as A + remains valid

for the solution in the alternate approach. Now we

find the convergence (in the distributional sense)

41pAx W 6(x - X) as A

where 4* - (0,P) by virtue of the vortex impulse

constraint (and (6.1)). Also, as a consequence of

(6.11), we have

*PX+ 1 = l/4vP as X +

Finally, the limiting form of solutions as discussed in

§4 remains equally valid for wp. as X

APPENDIX: Vortex energy and impulse

We include this discussion in order to clarify the

physical basis of the concepts of energy and impulse of

an ideal fluid flow defined in §1. These concepts are

developed in the literature only for the motion of a

body through an irrotational flow or for a vortex
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motion in an unbounded fluid (without interior

boundaries). The corresponding results in the more

general context needed here - the motion of a body

through a rotational flow - do not seem to be available

in the standard references; see, for example, Batchelor

.1].

We consider a body D (compact, connected,

simply-connected, smooth boundary) moving with

translational velocity U(t) and zero angular velocity

through an ideal fluid at rest at infinity; the fluid

occupies the exterior domain D - R2\D. The (fluid)

velocity field, u - u(x,t), relative to a frame fixed

in D is governed by the equations

(A.1) Veu - 0 in D, v.u- 0 on 3D,

(A.2) ut + u.Vu - -Vp - U in D

v denotes the unit normal on 3D directed exterior

to D. The (fluid) velocity field relative to a

corresponding frame fixed at infinity is then given by

u = u(x,t) - u(x,t) + U(t)

We shall require that
(A.3) lul = o(Ixl 2 ), IVul - O(Ix1 3 ) as Ixl

this. restriction - adequate for our purposes - is more

than is necessary for a general discussion of these

concepts. The vorticity, w = w(x,t), is given by
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a2  3 1  a 2  * 1

1 2j 1i T2

The dynamical equation (A.2) can be written in either

of the following, well-known, equivalent forms:

(A.4) - wJu - Vb, b -. u 2 + p0

(A.5) Wt + u-Vw - 0

recall J(al~a2 ) = (a2 ,-a })

We now define two functionals of any velocity

field u satisfying (A.3) and the condition that w

has bounded support in D. The fluid energy is defined

to be

(A.6) E-. 1 i ax
2D

The fluid impulse is defined to be

(A.7) P (PP2 } with

P, f x92 wdx + f x2u .Jvds

P2 - I xwdx - f x -Jvds
D 3D

The physical significance of E* is entirely standard;

that of P* is not however. In an appropriate sense

P takes the place of the fluid momentum which cannot

be defined directly because the integral

I udx
D
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is divergent according to (A.3). Indeed, if the lack

of convergence is simply ignored then the expressions

(A.7) can be derived formally from the latter integral

by integration by parts.

In order to clarify the meaning of (A.7) we

provide the following proposition in which the impulse

is related to the reaction force of the fluid on the

body D when accelerated.

Proposition. Let u satisfy (A.1, A.2, A.3) and the

condition that w has bounded support in D. Then

d*
(A.8) F -f pvds d

3D

We shall derive the first component of (A.8) only,

as the other is similar; namely, we shall show

ida
(A.9) - vds If x xwdx + f x u.Jvda)

Using the definition in (A.4) we can write

f Pvdo = fI juj2vldo - f bv ds
3D 1 D 2D

and so we consider these two integrals separately.

First integral:
f 1 ju2 v  f1_I 1^d2

luids = I 1 do - f u'UvIds
3D 3D 3D

= I (2 1u1 2 )dx - f u'UVldS
D 1 3D
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Applying the identity a 1 2 u 2 = 2  V'(UIu) we

then have

f lul 2v ds = f Wu2dx + f [(Vu)u- (ueU)v Ids
3D D aD

f 'D u2dx + U2{f wdx + f u.Jvds}
D D a

= f Wu2 dx ;

D

here we use the fact that the (total) circulation

(A.10) r =f wdx + f uJvds= 0
D aD

since integration by parts is justified according to

(A,3). Continuing we calculate

f Wu2dx = f Vx2.(wu)dx
D D

= - f x2 u'Vwdx
D

f f x2 wtdx
D

by virtue of equation (A.5). Therefore,

(A1) f1 2 vdS
,D 2 U dt" x2wdx
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Second integrals

ax2
-f bv doin b -2do
3D 3D

ab

f x2 T do
3D

f x2 (u wJu)ds
aD

-f x2Ut*ds
3D

with T Jv (unit tangent) on 3D; here we use

integration by parts around 3D followed by equation

(A.4). Therefore,

(A.12) - f bv do f x u.Jvds
3D ID

The required identity (A.9) now follows by combining

(A.ll) and (A.12).

The term "impulse" is derived from another

interpretation of P . We say that u is expressed in
p*

terms of impulsive pressures, p, and impulsive

(body) forces, f*, if it can be written

* * 2-e(A.13) u = -Vp + f with If'I = O(IxI-  )

as Ixi + m, £ > 0

It then follows that

(A.14) P =- f p vds + f f dx
3D D
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and this expression is independent of the choice taken

in (A.13). A further discussion is given in Lamb [3J

t 11.11.

In the case that the body is assumed to be

symmetric about the x, axis and the flow likewise the

expressions (A.6) and (A.7) take an especially simple

form; this is the situation considered in 15. In

keeping with the notation established earlier (see 15)

we shall now let D and D denote respectively the

intersection of the body and the (fluid) domain with

the upper half plane ix2 > 0). We assume also that

U = Q(1,0), 0 < Q < -. These symmetry assumptions

(along with (A.3)) imply that w(i) - -w(x),

u1 () = u1(x), u2 (iX) -u2(x) for x (xl.-x 2 ),

x e D. Thus, we find
1E* 1 2(A.6') E lul dx,

(A.7') P1 = x2 wdx + f xu0Jvds,P

2 1 x2 2u.P2d0
D 3D

We claim that these quantities can be expressed in the

alternate forms:

(A.15) 1 E* wGwdx + 1 M0 2

2 2D 2

(A.16) P = f nwdx + MQ, P2 - 0D

where the induced mass of D is defined by
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(A.17) M f IV(n - x2)l2dx ;
D

we retain the definitions of G and n from §5.

In the derivations of these identities we let

i - T -2; then the streamfunction for the velocity
* A A

field u is given by G = Gw - Qn.

Derivation of (A.15):
E* =1 f  2

2 . [v;I dx
2 D

1 -IIGI 2dx-Q~ 1 2 f.;2
f 1~w d fVGw*Vndx + Q Indx

D D D

- £ f,,wGwdx n o f o.Iof,,dx
D D

Derivation of (A.16):

SP= f nwdx +f nAdx - f n do2 D D 8D

=f nwdx-f doTi
D aD

f1 nwdx +QJ an Tdo
D D

D D- f rnwdx + Q j IVnI2dx•

D D

As a consequence of these identities we see that

the energy and impulse may both be split into a

"rotational part" and an "irrotational part"; the

functionals E(w) and P(w) defined by (1.10) and
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(1.11) represent the rotational parts respectively,

while M0Q2 and MQ with definition (A.17) represent

the irrotational parts respectively.
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